While transiting from replication (exponential phase in vitro) to

While transiting from replication (exponential phase in vitro) to transmission (stationary phase in vitro), L. pneumophila activates an intricate network of regulators such as LetA/S, RpoS, PmrA, CpxR, rsmYZ, CsrA and LqsR [11, 13, 20, 21, 59]. As shown in our results, unlike the stationary-phase wild type which exhibits transmission traits, LpΔclpP mutant cells in stationary phase

exhibit replicative forms such as reduced stress tolerance (Figure 2 and 3), cell elongation (Figure LY3023414 clinical trial 4), enhanced sodium resistance (Figure 5), impaired cytotoxicity and growth on amoebae plates (Figure 6) and severely compromised intracellular multiplication in amoebae host (Figure 7). Thus, ClpP may play an important role in the transition from replication to transmission in L. pneumophila. On the other hand, several transmission traits are not affected by clpP-deletion such as pigment accumulation and transcription from the flaA (legionella flagellin coding) gene (our unpublished data), suggesting that the impact of ClpP on the transition to transmissive form in L. pneumophila is somewhat limited. Considering that ClpP always executes the post-transcriptional feedback regulation, and

moreover, degrades the same substrates by cooperating with other proteases [26, 31], one explanation to such a limitation is that the degradation of ClpP substrates could be compensated by other proteases in mTOR inhibitor clpP-deletion mutant, thus ClpP cannot govern the transition just as the global regulators such as RpoS, CsrA or LetA/S in L. pneumophila. ClpP plays prominent roles

in virulence of various Gram-positive pathogens such as S. aureus, S. pneumoniae and L. monocytogenes [34–36, 60]. Furthermore, ClpP was reported to control the levels of key virulence factors of type III secretory systems (T3SS) in certain pathogens such as S. typhimurium and Yersinia pestis [61, 62]. Recently, it was reported Palmatine that loss of ClpP attenuated the virulence of Helicobacter pylori, a pathogen owning type IV secretory system (T4SS) [63]. It is interesting that clpP-deletion severely compromised the L. pneumophila infection against amoebae host (Figure 6 and 7). In our results, the sodium resistance exhibited by LpΔclpP mutant (Figure 5), which is a phenotype shared by the mutants without functional Dot/Icm T4SS [48, 64], together with the comparable decline in intracellular multiplication observed in LpΔclpP and ΔdotA mutants (Figure 7), suggest a role of ClpP in T4SS-dependent virulence through degrading a repressor or activating an up-regulator of the substrate(s) of ClpP. One possibility is that the ClpP Torin 2 protease has a major impact on the expression or function of Dot/Icm T4SS in L. pneumophila. Another possibility is that ClpP might be required for the expression of some T4SS substrates.

The COMSTAT results for both the type 3 fimbriae mutant and type

The COMSTAT results for both the type 3 fimbriae mutant and type 1 and 3 fimbriae double mutant revealed much lower VX-689 in vivo substratum coverage than the wild type. This indicates that type 3 fimbriae are most important for initial

cell-surface attachment. Furthermore, the lower amount of biomass and average thickness of the biofilms for the type 3 fimbriae mutants compared to the wild type and type 1 fimbriae mutant indicates that type 3 fimbriae also mediates cell-cell adherence in the biofilm. Our results confirm previous studies demonstrating that type 3 fimbriae are important for K. pneumoniae biofilm formation [29, 33]. Also in E. coli , the recently discovered ability to express type 3 fimbriae, mediated by conjugative plasmids, was found to profoundly enhance biofilm formation [16, 17]. Thus, type 3 fimbriae expression seems to generally promote biofilm formation in different bacterial species. We have previously established that type 1 fimbriae but not type 3 fimbriae are an essential virulence factor in K. pneumoniae urinary tract infections [18, 19]. The present study demonstrates how the impact of a specific virulence factor may vary significantly in different infection scenarios and host environments. Thus, although type 3 fimbriae may

not be significantly involved in development of uncomplicated UTIs, our results indicates that type 3 fimbriae may be a significant virulence factor in CAUTIs since they promote biofilm formation selleck chemicals llc on inert surfaces. AZD1152 order Understanding the mode of bacterial growth in vivo during Farnesyltransferase infection is important in relation to future therapeutic measures. Conclusions In conclusion, the present work shows that type 3 fimbriae, but not type 1 fimbriae, mediate biofilm formation in K. pneumoniae C3091. As type 3 fimbriae promote adhesion to abiotic surfaces and biofilm formation in K. pneumoniae and other species, as shown here and by other studies [16, 17, 29, 33], type

3 fimbriae may generally play a significant role in development of catheter related infections such as CAUTIs. In this respect, the occurrences of conjugative plasmids encoding type 3 fimbriae in other species are worrisome. As the vast majority of K. pneumoniae isolates are able to express both type 1 and type 3 fimbriae [1], the use of epidemiological studies to elucidate the role of fimbriae in catheter associated K. pneumoniae infections is difficult. Thus further studies using catheterized in vivo infection models, are needed to further characterize the role of fimbriae in catheter related infections. Acknowledgements C. Struve was partially financed by Danish Research Agency Grant 2052-03-0013. We would like to thank Professor Søren Molin, Centre for Biomedical Microbiology, Technical University of Denmark, 2800 Lyngby, Denmark, for providing flow chamber facilities. References 1. Podschun R, Ullmann U: Klebsiella spp .

Now we are studying ways to add functions to the interface for si

Now we are studying ways to add functions to the interface for simplifying the visual presentation of the maps, such as scoping nodes and chains according to users’ concerns. In addition, we are planning to develop functions for switching the targeted range of a chain as necessary, comparing multiple maps, and changing parts of a map interactively without requiring the user to input new commands. Although discussion of the development process and quality of the SS ontology as a whole is beyond the scope of this paper, we have indicated some of the ways in which

we should revise and improve the SS ontology. In addition to upgrading the SS ontology and the interface of the mapping tool, future work includes developing new tools to satisfy the functions described in Layers 3 and 4 of the reference model. Acknowledgments This research was selleck inhibitor supported by MEXT through Special Coordination Funds for Promoting Science and Technology, as a part of the IR3S flagship research project “Development of an Asian Resource-Circulating Society” undertaken by Osaka University find more and Hokkaido University. This study was made possible through a series of workshops on SS knowledge structuring coordinated by the Osaka University Research Institute for Sustainability Science (RISS). We would like to extend our sincere appreciation to Associate Professor Steven Kraines (University of Tokyo) for his invaluable

comments and advice. We would like to thank Assistant Professor Michinori Uwasu (RISS) for organizing these workshops and Mr. Mamoru Ohta (Enegate Co., Ltd.) for supporting the development of Hozo and collecting the relevant information for the SS ontology. We gratefully

acknowledge the helpful discussions with Professor Hideaki Takeda and Associate Professor Masaru Yarime on several points of SS knowledge 17-DMAG (Alvespimycin) HCl structuring. References Athanasiadis IN, Rizzoli AE, Donatelli M, Carlini L (2006) Enriching software model interfaces using ontology-based tools. In: Dinaciclib mw Voinov A, Jakeman A, Rizzoli A (eds) Proceedings of the International Environmental Modelling and Software Society (iEMSs) 3rd Biennial Meeting, “Summit on Environmental Modelling and Software,” Burlington, Vermont, 9–12th July 2006 Berztiss AT (1992) Lecture notes in computer science: engineering principles and software engineering. Springer, Berlin, pp 437–451 Brilhante V, Ferreira A, Marinho J, Pereira JS (2006) Information integration through ontology and metadata for sustainability analysis. Paper presented at the International Environmental Modelling and Software Society (iEMSs) 3rd Biennial Meeting, “Summit on Environmental Modelling and Software,” Burlington, Vermont, 9–12th July 2006 Choucri N (2003) Mapping sustainability. Global System for Sustainable Development. Home page at: http://​gssd.​mit.​edu/​GSSD/​gssden.

Figure 4 Transcriptional fusion assays and the rhizobactin operon

Figure 4 Transcriptional fusion assays and the rhizobactin operon. (A) GusA activities were measured for fusions in genes rhtX, rhbB and rhbF in wild-type (Rm1021) and chvI261 mutant (SmUW38) strain backgrounds. (B) The rhizobactin genes are clustered

in one operon, F1 F2 and F3 represent the positions #Defactinib randurls[1|1|,|CHEM1|]# of the fusions to rhtX, rhtB, and rhbF respectively. The grey boxes (B1 and B2) represent the possible position for ChvI binding, and P1 and P2 are predicted promoters. The high basal level of the negatively regulated operons is not really unexpected given that we do not know the repressing conditions, and also the likelihood of multiple regulatory systems acting on these genes. These experiments involved the comparison of gene expression in genetic backgrounds that resulted in differences only in the presence / absence of the ChvI regulator. Otherwise, the environmental conditions

were not altered. Discussion An adaptation of methods to perform gel electrophoresis mobility shift assays allowed us to identify DNA fragments with higher affinity for ChvI. Analyses of these results force us to revise our earlier perceptions following phenotypic analyses of ExoS/ChvI as mainly a regulatory system for exopolysaccharide production. Our results suggest that the ChvI regulon includes genes from diverse pathways. Moreover, ChvI appears to have a dual regulatory role, activating and repressing different operons. The total number of targets likely far outnumbers the 27 fragments that we pulled out in our screen, especially considering that we did not hit the same fragment more than once, and we also did not MDV3100 mouse find a few other targets that had previously been shown to be bound by ChvI. The approach used in our study is highly complementary to the microarray and directed DNA binding study of Chen et al. [17] that resulted in the identification of several potential regulatory targets of ExoS/ChvI and the prediction of a consensus binding sequence. It is important to note, however, that of 19 upstream regions tested, binding was only detected

to three (ropB1, SMb21440, SMc01580), and a putative consensus sequence was determined using some upstream regions to which binding had not been demonstrated. Confirmation of this consensus binding sequence awaits more detailed DNA footprinting experiments on a larger number of identified targets. It is possible that Silibinin many ChvI-repressed genes may not have been detected in that study due to the use of a constitutively activated variant of the ChvI protein that might not have been able to function as a repressor. The binding of ChvI within SMa2337 (rhtX) to repress rhtXrhbABCDEF gene transcription could suggest that following the sensing of a signal other than the presence of iron, ExoS/ChvI represses genes for rhizobactin 1021 production. This operon is known to be upregulated by RhrA in iron-depleted conditions [31] and downregulated by RirA in iron-replete conditions [32].

Activated CheY (CheY-P) interacts directly with the motor of the

Activated CheY (CheY-P) selleckchem interacts directly with the motor of the flagella to control swimming direction. The dephosphorylation of CheY-P occurs spontaneously, only in enterobacteria this reaction is accelerated by the phosphatase CheZ. For adaptation, CheB and its antagonist CheR remove or add methyl groups to the receptors, respectively. In R. centenaria, the two central components of the chemotactic signal transduction cascade, namely CheA and CheY, are present as the fusion protein Rc-CheAY located in the first chemotactic operon [17], a situation that is also observed in Salubrinal manufacturer Helicobacter [18]. Whereas the role

of the CheY-domain of the CheAY protein in H. pylori seems to be a phosphate sink, in R. centenaria, the function of Rc-CheAY remains still unclear. While Che proteins are generally involved in chemotactic responses, they were also shown to affect the phototactic response in R. centenaria as demonstrated by the analysis of many che mutants [19]. In the last decade, bacterial photoreactive proteins like phytochromes, previously thought to be a unique feature in plants, have been identified as photoactive yellow proteins (Pyp) and have now been extensively studied in a variety of eubacterial species (for review see [20, 21]). For R. centenaria, a Pyp-like protein, Ppr, was described in 1999 by Bauer and colleagues

[22]. The large fusion protein Ppr consists of three Veliparib manufacturer functional domains, an N-terminal Pyp domain with the cinnamic acid chromophore, the central phytochrome-like

bilin attachment domain Bbd and the C-terminal histidine kinase domain Pph which autophosphorylates Morin Hydrate an essential histidine residue [22]. Although some Pyp proteins have been crystallized and biophysically characterized in great detail (reviewed by [21]), no distinct physiological role could be attested to these unique proteins. A Ppr-deletion mutant lacking amino acid residues 114-750 did not show any alterations in phototactic behaviour, instead exhibited a strongly deregulated expression of the chalcone synthase gene suggesting a regulatory function in the polyketide synthesis [22]. Although there is no obvious direct involvement of Ppr in the phototactic or scotophobic reaction, an interaction with the chemotactic signal transduction components is plausible to regulate general phosphorylation levels or transduce phosphoryl groups to a yet unknown light-dependent signal transducing protein. We therefore analysed whether the Ppr protein and in particular its phosphorylating kinase domain Pph interacts with the Rc-Che proteins. Results The chemotactic response of E. coli is inhibited by the expression of Ppr The chemotactic network in E. coli is very sensitive to alterations in the expression level and stoichiometry of the chemotactic proteins Ec-CheW [23, 24] and Ec-CheA [25] as well as the MCP receptors [26, 27].

Research carried out in Europe has shown the dominance of C jeju

Research carried out in Europe has shown the dominance of C. jejuni in animal intestinal tracts, for example, broiler chickens, cattle, and wild-living mammals and birds [2, 7, 8]. Pigs Protein Tyrosine Kinase inhibitor are known to be frequently infected with Campylobacter (prevalence between 50% and 100%), to exhibit high counts of this pathogen in their faeces (ranging from 102 to 107 Colony Forming Units (CFU) of Campylobacter per gram), and to show a dominance of C. coli [9–11]. Nevertheless, some studies have found a dominance of

C. jejuni in pigs and of C. coli in chickens [12–15]. Given these contradictory data, the risk of foodborne disease associated with animal species is not clear. In terms of risk assessment, the ability to differentiate and quantify these two species is essential to describe more precisely the presence of Campylobacter in livestock animals. The identification of Campylobacter using conventional methods is slow (culture-based methods can take up to five days) and problematic due to their fastidious growth requirements and biochemical PI3K inhibitor inertness [16, 17]. Moreover, the detection of C. coli and/or C. jejuni in complex substrates like faeces or environmental samples is difficult as the culture conditions have to be selective enough to avoid overgrowth from competiting organisms. Additionally these bacteria may enter into a viable but nonculturable state (VBNC) [18]. The correct differentiation

of thermophilic check details Campylobacter spp., especially C. coli and C. jejuni, by phenotypic tests is difficult and hippurate hydrolysis test used to distinguish

these two species is often problematic [19]. Furthermore, C. jejuni may also coexist with C. coli in pigs, but at 10-100-fold lower numbers than C. coli [10, 11, 20], so C. jejuni will be less frequently isolated from such samples because only a few colonies are identified to the species level with conventional culturing and biochemical testing techniques. Molecular methods are an alternative to the bacteriological see more method for the detection of C. coli and C. jejuni in various substrates [1, 17, 21–24]. Real-time PCR has provided a reliable tool to detect and to quantify C. jejuni and/or C. coli in pure culture [25], in poultry, milk, or water [26, 27], and in complex substrates like food products [28–30] and faecal samples [20, 31–33]. However, of the real-time PCR techniques developed, none were capable of differentiating and quantifying C. coli and C. jejuni directly from pig faecal, feed, and environmental samples. The present study aimed to develop a species-specific real-time PCR method to detect and quantify C. coli and C. jejuni directly in pig faecal, feed, and environmental samples. The first step in the development of the assay was the definition of the multiplex PCR assay to quantify C. coli and C. jejuni isolates from bacterial cultures.

J Ind Eng Chem 2012, 18:449–455 10 1016/j jiec 2011 11 029CrossR

J Ind Eng Chem 2012, 18:449–455. 10.1016/j.jiec.2011.11.029CrossRef 17. Qiu Y, Chen W, Yang S: Double-layered photoanodes from variable-size anatase TiO 2 nanospindles: a candidate for high-efficiency dye-sensitized solar cells. Angew Chem 2010, 122:3757–3761. 10.1002/ange.200906933CrossRef 18. Lin XP, Song DM, Gu

XQ, Zhao YL, Qiang YH: Synthesis of hollow spherical TiO 2 for dye-sensitized solar cells with enhanced performance. Appl Surf Sci 2012, 263:816–820.CrossRef 19. Kim A-Y, Kang M: High efficiency dye-sensitized solar cells based on multilayer stacked TiO 2 nanoparticle/nanotube Selleck Androgen Receptor Antagonist photoelectrodes. J Photochem Photobiol A Chem 2012, 233:20–23.CrossRef 20. Bakhshayesh AM, Mohammadia MR, Dadar H, Fray DJ: Improved efficiency of dye-sensitized solar cells aided by corn-like TiO 2 nanowires as the light scattering layer. Electrochim Acta 2013, 90:302–308.CrossRef 21. Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK: Raman spectrum of graphene and graphene layers. Phys Rev Lett 2006, 97:187401.CrossRef 22. Yang N, Zhai J, Wang D, Chen Y, Jiang L: Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells. ACS Nano

2010, 4:887–894. 10.1021/nn901660vCrossRef 23. Murayama M, Mori T: Evaluation of treatment effects for high-performance dye-sensitized solar cells using equivalent circuit analysis. Thin Sol Film 2006, 509:123–126. 10.1016/j.tsf.2005.09.145CrossRef buy Tubastatin A Competing interests The authors declare that they have no competing interests. Authors’ contributions LCC wrote the paper and designed the experiments. CHH prepared the samples. PSC, XYZ, and CJH did all the measurements and analyzed the data. All authors read and approved the final manuscript.”
“Background SbQ (a styrylpyridinium salt), similar to surfactants, is an amphiphilic sensitizer of the styrylpyridinium family [1], and it produces a very planar stacked rod-like micelle structure. Such a structure makes it possible to stack the molecules with Orotidine 5′-phosphate decarboxylase the hydrophobic regions one above the other, with the aldehyde

and nitrogen-methyl groups alternating, and finally produces an aggregate [2]. SbQ can react with amino groups of proteins to improve the protein stabilization [3]. Moreover, it can be dimerized via the [2 + 2]-cycloaddition 4SC-202 order reaction under ultraviolet (UV) irradiation [4]. According to Tao et al. [5], cross-linking of the hydrophobic core via dimerization reaction of the SbQ molecules induced by UV light ultimately produced cross-linked micelles because of hydrophobic interactions between SbQ molecules. Hence, the cross-linked SbQ-montmorillonite (MMT) has potential applications for hydrophobic drug delivery and can be used as an additive into polymeric composites and improve the stability and mechanical properties of polymers [6–9].

Three DT193

Three DT193 isolates (1434, 5317, and 752) had Vactosertib a significant increase in MDV3100 mw invasion during early-log growth in the presence of 16 μg/ml tetracycline, and all three of these isolates have in common the presence of a single tetracycline resistance gene, tetA (Table 1). Tetracycline exposure did not enhance the invasion phenotype of the other DT193 isolates or the three DT104 isolates. Figure 2 Changes in S. Typhimurium invasiveness at early- and late-log growth after tetracycline

exposure. Invasion assays were performed on S. Typhimurium isolates grown to either early- or late-log phase and exposed to four different tetracycline concentrations (0, 1, 4, and 16 μg/ml) for 30 minutes. Changes in invasion were normalized to the control dose (0 μg/ml) for each isolate at (A) early-log and (B) late-log growth phase. The “*” indicates a significant change based on the pre-normalized data. The numbers in parentheses indicate percent invasion at the control dose (0 μg/ml) for https://www.selleckchem.com/products/Gefitinib.html each isolate. To determine if tetracycline exposure enhances Salmonella

invasiveness during late-log phase, isolates were grown to OD600 = 0.60 and exposed to 0, 1, 4, and 16 μg/ml of tetracycline for 30 minutes. Tetracycline did not increase the invasiveness of Salmonella during late-log growth in any of the isolates (Figure 2B; Additional file 1). However, the level of invasion induced by 16 μg/ml tetracycline during early-log phase in the three DT193 isolates was similar to the invasion levels of their respective controls (0 μg/ml) during late-log phase. These results demonstrate that when Salmonella is at its highest level of normal invasion (late-log), exposure to sub-inhibitory levels of tetracycline does not result in hyperinvasiveness; instead, tetracycline exposure triggers the invasive phenotype in specific isolates during a phase of growth that Salmonella is not otherwise fully

invasive (early-log). Gene expression changes due to tetracycline exposure The relative transcript levels of three genes associated with invasion regulation (hilA, prgH, and invF), as well as the tetracycline resistance genes in each isolate (tetA, B, C, D, and/or G), were determined Cell press by real-time PCR. The hilA gene is essential for invasion as HilA activity regulates downstream invasion factors, which includes the prgH and invF genes [21, 22]. Together, these genes provide a direct and indirect measure of both the hilA transcript and HilA protein, respectively. During early-log phase, all three invasion genes were significantly up-regulated in seven of the eight isolates at 16 μg/ml compared to the 0 μg/ml control, while four isolates had one or more of the invasion genes significantly up-regulated at 4 μg/ml; no invasion gene expression changes occurred in any isolate at 1 μg/ml (Figure 3; Additional file 1).

coli KanR, SucS transformants were then transformed with the PCR

coli. KanR, SucS transformants were then transformed with the PCR SOEing product and selected for growth on sucrose. Transformants were then screened by PCR and sequenced to confirm the presence of the 5 bp insertion and the absence of additional mutations. The resultant strains, JWJ159 (2019cyaA+5 bp) and JWJ160 (2019cyaAnagB+5 bp) were used for subsequent analysis. RNA extraction and

transcriptional analysis RNA was extracted using the hot acid phenol method as described previously [29]. DNA was removed selleck from extracted RNA by digestion with DNase I (New England Biolabs) and cleaned up with the RNeasy Mini Kit (Qiagen, Valencia, CA). RNA quality was assessed with an Agilent 2100 Bioanalyzer (Agilent, Santa Clara, CA) CHIR98014 purchase and the concentration was determined using a NanoDrop ND-1000 Spectrophotometer (NanoDrop Technologies, Wilmington, DE). For real time RT-PCR analysis, primer/probe sets were obtained using the Custom TaqMan Gene Expression Service (Applied Biosystems, Foster City, CA). Primer/probe sets were designed using the sequence of HI0145 and HI0146 from H. influenzae 2019. A primer/probe set for the 16S rRNA of H. influenzae was designed and used as a control. The TaqMan RNA-To-CT 1-Step Kit (Applied Biosystems) was used following the manufacturer’s protocol. Reactions were set up in triplicate using 20 ng of RNA. Reactions

were carried out using the StepOnePlus Real Time PCR System (Applied Biosystems) with StepOne analysis software. Osimertinib Results were calculated using the comparative CT method to determine the relative expression ratio between RNA samples. The primer and probe set for HI16S rRNA was used as the endogenous reference to normalize the results. Two independent sets of RNA Trichostatin A in vitro samples were used for each experiment and the mean fold change is reported. Data are expressed as mean +/- SD. Protein expression and purification SiaR was expressed and purified as described previously [14], with modified buffers to enhance stability of the purified

protein and an additional purification step. Cells were resuspended in the SiaR lysis and equilibration buffer (10 mM Tris, pH 8.0, 300 mM NaCl, 0.1% CHAPS) prior to lysis by French press. After protein binding, the resin was washed with the SiaR wash buffer (10 mM Tris, pH 8.0, 1,150 mM NaCl, 10% glycerol, 0.1% CHAPS, 5 mM imidazole) and protein was eluted with the SiaR elution buffer (10 mM Tris, pH 8.0, 150 mM NaCl, 10% glycerol, 0.1% CHAPS, 500 mM imidazole). The purified protein was concentrated using an Amicon Ultra centrifugation filter (Millipore, Billerica, MA) with a 10 kDa molecular weight cutoff. The protein sample was then desalted into the SiaR storage buffer (10 mM Tris, pH 8.0, 150 mM NaCl, 10% glycerol, 0.1% CHAPS) using FPLC through a 10 ml (2-5 ml) HiTrap Desalting Column (GE Healthcare, Piscataway, NJ). Protein concentration was determined using the NanoDrop ND-1000 Spectrophotometer and an extinction coefficient of 7,575 M-1 cm-1.

Opt Mater 2011, 33:359–362 10 1016/j optmat 2010 09 020CrossRef

Opt Mater 2011, 33:359–362. 10.1016/j.optmat.2010.09.020CrossRef 12. Jun JH, Seong HJ, Cho K, Moon BM, Kim S: Ultraviolet photodetectors based on ZnO nanoparticles. Ceram Int 2009, 35:2797–2801. 10.1016/j.ceramint.2009.03.032CrossRef 13. Jin YZ, Wang JP, Sun BQ, Blakesley JC, Greenham NC: Solution-processed ultraviolet photodetectors based on colloidal ZnO nanoparticles. Nano Lett 2008, 8:1649–1653. 10.1021/nl0803702CrossRef 14. Soci S, Zhang A, Xiang B, Dayeh SA, Aplin DPR, Park J, Bao XY, Lo YH, Wang D: ZnO nanowire UV photodetectors with high internal gain. Nano Lett Alvocidib clinical trial 2007,7(4):1003–1009.

10.1021/nl070111xCrossRef 15. Prades JD, Jimenez-Diaz R, Hernandez-Ramirez F, Fernandez-Romero L, Andreu T, Cirera A, Romano-Rodriguez A, Cornet A, Morante JR, Barth S, Mathur S: Toward a systematic understanding of photodetectors based on individual metal oxide nanowires. J Phys Chem C 2008,112(37):14639–14644. 10.1021/jp804614qCrossRef 16. Ahn SE, Lee JS, Kim H, Kim S, Kang BH, Kim KH, Kim GT: Photoresponse of sol–gel-synthesized ZnO nanorods. Appl Phys Lett 2004, 84:5022. 10.1063/1.1763633CrossRef 17. Park JY, Yun YS, Hong YS, Oh H, Kim JJ, Kim SS: Synthesis, electrical and photoresponse properties of vertically well-aligned and epitaxial ZnO nanorods PCI-32765 order on GaN-buffered sapphire substrates. Appl Phys Lett 2005,87(12):123108. 10.1063/1.2053365CrossRef 18. Aden AL, Kerker M: Scattering of electromagnetic waves from two concentric

spheres. J Appl Phys 1951, 22:1242. 10.1063/1.1699834CrossRef 19. Ruan Z, Fan S: Design of subwavelength superscattering nanospheres. Appl Phys Lett 2011, 98:043101. 10.1063/1.3536475CrossRef 20. Lo SS, Mirkovic T, Chuang CH, Scholes GD: https://www.selleckchem.com/products/BafilomycinA1.html Emergent properties resulting from type-II band alignment in acetylcholine semiconductor nanoheterostructures. Adv Mater 2011, 23:180–197. 10.1002/adma.201002290CrossRef 21. Bera A, Basak D: Photoluminescence and photoconductivity of ZnS-coated ZnO nanowires. ACS Appl Mater Interfaces 2010,2(2):408–412. 10.1021/am900686cCrossRef 22. Fang XS, Hu LF, Huo KF, Gao B, Zhao LJ, Liao MY, Chu PK, Bando Y, Golberg D: New ultraviolet photodetector based on individual

Nb 2 O 5 nanobelts. Adv Funct Mater 2011, 21:3907–3915. 10.1002/adfm.201100743CrossRef 23. Fang XS, Bando Y, Liao MY, Gautam UK, Zhi CY, Dierre B, Liu BD, Zhai TY, Sekiguchi T, Koide Y, Golberg D: Single-crystalline ZnS nanobelts as ultraviolet-light sensors. Adv Mater 2009, 21:2034–2039. 10.1002/adma.200802441CrossRef 24. Bai S, Wu W, Qin Y, Cui N, Bayerl DJ, Wang X: High-performance integrated ZnO nanowire UV sensors on rigid and flexible substrates. Adv Funct Mater 2011, 21:4464–4469. 10.1002/adfm.201101319CrossRef Competing interests The authors declare that they have no competing interests. Authors’ contributions LP participated in the simulation studies and drafted the manuscript, SH participated in the design of the experiment, and XH participated in the revision of the manuscript.