rpoB gene sequence

rpoB gene sequence Belnacasan mouse analysis for genomic species identification

was performed as previously described [3]. PCR analyses The conservation of specific GEIs in a set of A. baumannii strains was assessed by PCR amplification. PCR reactions were carried out by incubating 20 ng of genomic DNA with 160 ng of each primer in the presence of dXTPs (200 nanomoles), 1.5 mM magnesium chloride and the Taq DNA polymerase Recombinant (Invitrogen). The sequences of the oligomers used as primers, the experimental conditions, the length of the amplimers, the coding regions amplified are all listed in Additional file 8. PCR products were electrophoresed on 1.5-2% agarose gels in 0.5×TBE buffer (45 mM Tris pH 8, 45 mM Borate, 0.5 mM EDTA) at 120 V (constant voltage). The 100 bp ladder (Promega) was used as molecular weight marker. The co-linearity of contigs and the DNA content of the corresponding chromosomal regions were assessed by sequencing PCR products bridging contig ends. Acknowledgements We thank all colleagues who generously

provided strains included in the study: Antonella Agodi, Matteo Bassetti, Susanna Cuccurullo, Ziad Daoud, selleck screening library Athanassios Tsakris, and Haluk Vahaboglu. This work was supported in part by grants from Agenzia Italiana del Farmaco, Italy (AIFA2007 contract no. FARM7X9F8K) and from Ministero dell’Istruzione, dell’Universita’e della Ricerca, Italy (PRIN 2008 to RZ, PRIN 2009 to PPDN). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Electronic supplementary buy 10058-F4 material Additional Rucaparib file 1: Structures of plasmids identified in ST2 3990, ST25 4190 and ST78 3909 strains. the figure shows the circular maps of plasmids p1ABST2, p2ABST2, p1ABST25, p2ABST25 and p1ABST78 with relevant features. ORFs and direction of the transcription are represented by arrow-shaped boxes. Plasmid sizes and names of various features are reported. (PDF 427 KB) Additional file 2: Coding capacity of plasmids carried by strains 3909 3990 and 4190. the table lists ORFs of plasmids p1ABST2, p2ABST2, p1ABST25, p2ABST25 and p1ABST78. Position, number of amino acids and putative function are reported for

each ORF. (XLS 36 KB) Additional file 3: Target site duplications. sequences duplicated at the ends of GEIs upon genome integration are listed in the table. Base changes in left and right TSDs are marked according to IUB codes. Residues missing in one TSD are in parenthesis. Known target genes are indicated. (XLS 116 KB) Additional file 4: GEIs organization and ORFs content. the 63 sheets of the EXCEL file correspond to the 63 genomic loci carrying GEIs shown in Figure 2. The ORF number, the amino acid length and the hypothesized function are given in each sheet. For draft genomes, the corresponding contigs are indicated. Identical or closely related ORFs present in different GEIs are positioned in the same row and labelled by the same colour to facilitate view.

05 are reported as statistically significant Bactericidal assays

05 are reported as statistically significant. Bactericidal assays The method used to examine the effect of bpaC mutations on the ability of Burkholderia

to resist the bactericidal activity of complement is outlined elsewhere [9, 77, 81]. We used final concentrations LY411575 in vivo of 50% and 25% serum in assays with B. pseudomallei and B. mallei, respectively. Protein preparations, western blot, purification of recombinant BpaC protein, and antibody production Sarkosyl-insoluble OM protein preparations were obtained as described by Carlone et al. [82]. The methods used to prepare whole cell lysates and perform western blot experiments are described elsewhere [8, 53, 54, 57, 83, 84]. His-tagged recombinant BpaC was obtained from cultures of E. coli TUNER carrying the plasmid pELHisBPSL1631-BMA1027, as previously outlined by our laboratory [67]. To obtain polyclonal Abs directed against BpaC, Epacadostat research buy the purified His-tagged protein was emulsified in Freund’s adjuvants (SIGMA-ALDRICH®) and used to immunize female BALB/c mice as reported by Lafontaine and colleagues [85]. Immunofluorescence labeling of E. coli and microscopy Expression of BpaC on the surface of E. coli recombinant bacteria was visualized by immunofluorescence microscopy as outlined by Balder et al. [55]. Briefly, paraformaldehyde-fixed E. coli cells were spotted onto glass slides. These bacteria were probed with α-BpaC polyclonal

Abs, followed by incubation with a goat α-mouse antibody labeled with Alexa Fluor 546® (Life Technologies™) and the nucleic acid dye DAPI

(Life Technologies™). Slides were examined by microscopy using a Zeiss LSM 510 Meta confocal system. ELISA Duplicate wells of Immulon™ 2HB plates (Thermo Scientific Nunc) were coated overnight at 4C° with 1 μg of His-tagged BpaC. Excess unbound antigen was removed by washing the wells with PBS + 0.05% Tween 20 (PBST), and the wells were then blocked with PBS + 0.05% containing 3% dry milk (blocking buffer) for 1 hour at Dipeptidyl peptidase room temperature. After washing with PBST, the wells were probed overnight at 4°C with sera from mice that survived acute aerosol infection with B. mallei ATCC 23344 and B. pseudomallei 1026b [67] diluted in blocking buffer. After this incubation, the wells were washed with PBST and incubated overnight with a goat α-mouse antibody conjugated to Horse Radish MDV3100 order Peroxidase (SouthernBiotech) diluted in blocking buffer. After washing off the excess secondary antibody with PBST, 100 μL of the SureBlue™ TMB Microwell Peroxidase Substrate (KPL) was added to the wells. Color development, which is indicative of Abs binding to BpaC, was measured spectrophotometrically by determining the absorbance of well contents at a wavelength of 650 nm. Animal experiments Female BALB/c mice (6–8 weeks of age) were purchased from Frederick National Laboratory for Cancer Research.

Despite this, we did not apply the sponge circumferentially becau

Despite this, we did not apply the selleck products sponge circumferentially because of the proximal location of the fasciotomy wound and the possibilities of distal circulatory compromise or venous congestion, as

with the tourniquet. Instead, we extended the sponge three times wider than the open wound and extended the transparent adhesive surgical drape to nearly encircle the anatomical area of the fasciotomy for the NPWT. In this way, the surgical drape prevented edema by retaining the skin and conveying the traction forces by NPWT to the underlying AR-13324 tissues to increase tissue pressure. We also set an appropriate suction pressure to maximize tissue pressure while leaving blood perfusion of the underlying tissue undistrurbed. Although increasing suction pressure also increases tissue pressure [20] and maximizes wound fluid removal [23], it can decrease the perfusion

of the underlying tissue [24], and may cause patient discomfort. At the wound edge, the microvascular blood flow can be maximized at as low a level as −80 mmHg of NPWT [25]. Maximum wound contraction can be achieved at −75 mmHg [23], so we continuously set the NPWT suction pressure at -100 mmHg (lower than the conventional −125 mmHg) to increase tissue pressure and wound fluid removal while maximizing wound contraction and microvascular blood flow. These extended NPWT methods act like a compression garment, applying a centripetal

compression effect to increase tissue pressure. However, increased tissue pressure by extended NPWT reduced over 48 hours of application, as it was non-circumferential find more [20]. Moreover, the sponges in the wound cavity limited the wound contraction by the NPWT [26]. To approximate the longitudinal fasciotomy wound further, we applied the dermatotraction at both skin margins under the NPWT sponge. The dermatotraction vessel loop pull the both skin margins continuously, allowing stress relaxation of the contracted skin and preventing the NPWT sponge from filling the wound cavity, thus maximizing wound contraction by NPWT [26]. In this way, the dermatotraction acted as an elastic corset lacing. Skin necrosis by dermatotraction is usually caused by the concentration of traction forces at an anchoring point, which compromises skin perfusion. However, Adenylyl cyclase in extended NPWT-assisted dermatotraction, the NPWT on the normal skin increases the skin flap perfusion [27] and sheers the skin flap to the center of the contraction axis; this distributes the concentrated traction forces at the dermatotraction anchoring point to the skin flap (as shown in Figure 4). In this way, the dermatotraction effectively approximates both skin flaps, avoiding skin perfusion compromise under the extended NPWT assist; this also reduces tissue edema and fluid collection while increasing tissue perfusion.

15 mg/dL) and 1+ proteinuria

15 mg/dL) and 1+ proteinuria TPCA-1 in vitro without hematuria. Renal sonography disclosed absence of both kidneys over native sites. Abdominal computed tomography identified her kidney being situated inside the pelvic cavity behind

the pubic symphysis, with a blood supply from the right common iliac artery (Fig. 1, left). Small molecule library mildly dilated proximal ureter was also noted (Fig. 1, right). She refused retrograde pyelography or nephrostomy owing to the inherent risk, and continued to receive follow-up without renal function deterioration. Fig. 1 Left (coronary view) solitary ectopic kidney was noted in pelvic cavity. Renal fossa was empty bilaterally. Right (axial view) mildly dilated proximal ureter was noted Congenital urologic anomalies estimatedly occur in 10 % of all births, but pelvic ectopic kidney is rare (incidence 1/3000) [1]. Chronic obstruction or nephrolithiasis is common in these patients [2], and can potentially be a cause of chronic kidney disease, as in our patient. Conflict of interest The author declares that he has no competing interest. References 1. Cinman NM, Okeke Z, Smith AD. Pelvic kidney: associated diseases and treatment. J Endourol. 2007;21:836–42.PubMedCrossRef

2. Lu CC, Tain YL, Yeung KW, Tiao MM. Ectopic pelvic kidney with urinary tract infection presenting as lower abdominal pain in a child. Pediatr Neonatol. 2011;52:117–20.PubMedCrossRef”
“Introduction Progressive deterioration of renal function and enlargement of renal cysts are two hallmarks of autosomal dominant polycystic kidney selleck chemical disease (ADPKD). It is widely recognized that during the renal compensation period, renal function decreases slowly but subsequently

decreases at a relatively faster rate [1, 2]. In a three-year CRISP study [3], the rate of change in iothalamate clearance was faster in the older age group (>30 years) than in the younger group, but the difference was not statistically significant (P = 0.2). Even if the glomerular filtration rate (GFR) is maintained near normal at a young adult age, ADPKD patients already have decreased effective renal plasma flow and an GNA12 increased filtration fraction [4]. A recent study revealed that occurrence of glomerular hyperfiltration in ADPKD children is associated with a significantly faster decline in renal function and higher rate of kidney enlargement over time [5]. As a result of more severe progression of ADPKD children with glomerular hyperfiltration, GFR is already lower than normal at around adolescent. Long-term longitudinal studies delineating renal disease progression are limited. Currently, potential therapeutic interventions are being developed for ADPKD [6–11]. The potentially effective compounds examined so far seem not to reverse already decreased renal function or decrease already enlarged kidney volume but to mitigate progressive deterioration or enlargement [6–8, 11].

Trends Biotechnol 18:506–511 doi:10 ​1016/​S0167-7799(00)01511-0

Trends Biotechnol 18:506–511. doi:10.​1016/​S0167-7799(00)01511-0 CrossRefPubMed Grossman AR (2000) Acclimation of Chlamydomonas reinhardtii to its nutrient environment. Protist 151:201–224. doi:10.​1078/​1434-4610-00020 CrossRefPubMed Happe T, Kaminski A (2002) Differential regulation of the Fe-hydrogenase during anaerobic adaptation in the green alga Chlamydomonas reinhardtii. Eur J Biochem 269:1022–1032CrossRefPubMed Happe T, Naber JD (1993) Isolation, characterization and N-terminal amino acid sequence of hydrogenase from the green alga Chlamydomonas reinhardtii. Eur J Biochem 214:475–481. doi:10.​1111/​j.​1432-1033.​1993.​tb17944.​x

CrossRefPubMed Happe T, Mosler B, Naber JD (1994) CBL0137 solubility dmso Induction, localization and metal selleck screening library content of hydrogenase

in Chlamydomonas reinhardtii. Eur J Biochem 222:769–775. doi:10.​1111/​j.​1432-1033.​1994.​tb18923.​x CrossRefPubMed Harris EH (1989) The Chlamydomonas sourcebook. Academic Press Inc, San Diego Harris EH (2009) The Chlamydomonas sourcebook (second edition). Introduction to Chlamydomonas and Its Laboratory Use, vol 1. Academic Press, San Diego Hemschemeier A (2005) The anaerobic life of the photosynthetic alga Chlamydomonas reinhardtii. Photofermentation and hydrogen production upon sulphur deprivation. PhD-thesis, Ruhr-University of Bochum. http://​www-brs.​ub.​ruhr-uni-bochum.​de/​netahtml/​HSS/​Diss/​HemschemeierAnja​Christine/​diss.​pdf Hemschemeier A, Fouchard S, Cournac L, Peltier G, Happe T (2008) Hydrogen production by Chlamydomonas reinhardtii: an elaborate interplay of electron sources and sinks. Planta 227:397–407. doi:10.​1007/​s00425-007-0626-8 CrossRefPubMed Ito K, Ohgami T (1992) Hydrogen detection based on coloration of anodic tungsten oxide film. Appl Phys Lett 60:938–940.

doi:10.​1063/​1.​106467 click here CrossRef Jouanneau Y, Kelley BC, Berlier Y, Lespinat PA, Vignais PM (1980) Continuous monitoring, by mass spectrometry, of H2-production and recycling in Rhodopseudomonas capsulate. J Bacteriol 143:628–636PubMed Kamp C, Silakov A, Winkler M, Reijerse EJ, Lubitz W, Happe T (2008) Isolation and first EPR characterization of the [FeFe]-hydrogenases from green algae. Biochim Biophys Acta 1777:410–416. doi:10.​1016/​j.​bbabio.​2008.​02.​002 CrossRefPubMed Kessler E (1974) Hydrogenase, photoreduction and anaerobic growth of algae. In: Steward WDP (ed) Algal physiology and biochemistry. Blackwell, Oxford Kindle KL (1990) High frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 87:1228–1232CrossRefPubMed King PW, Posewitz MC, Ghirardi ML, Seibert M (2006) Functional studies of [FeFe] hydrogenase maturation in an Escherichia coli biosynthetic system. J Bacteriol 188:2163–2172. doi:10.​1128/​JB.​188.​6.​4-Hydroxytamoxifen mouse 2163-2172.​2006 CrossRefPubMed Kitajima M, Butler WL (1975) Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone. Biochim Biophys Acta 376:105–115. doi:10.

PubMedCrossRef Authors’ contributions CCHK designed and performed

PubMedCrossRef Authors’ contributions CCHK designed and performed the qRT-PCR assays, virus challenge and survival experiments, analyzed the data and wrote the manuscript. JP assisted with sample preparations, qRT-PCR assays, mosquito rearing and virus challenge experiments. ISV performed

the Northern blot. KEO conceived the study, analyzed the data and edited the manuscript. AWEF conceived the study, generated the IR effector construct and the transgenic mosquitoes, performed the Genome Walking experiment, analyzed the data and edited the manuscript. All authors read and approved the final manuscript.”
“Background The genus Flavivirus contains a large number of emerging, vector-transmitted viruses. Of these, the four serotypes of dengue virus (DENV-1-4) pose the most significant threat to global public health. The global pandemic of dengue fever has escalated dramatically MK0683 cell line in recent decades, accompanied by a sharp increase in the more severe manifestations of the disease, dengue hemorrhagic fever and dengue shock syndrome [1]. Widespread cessation of vector control, increases in mosquito-breeding sites due to rapid urbanization, and expansion of global travel have all contributed to DENV emergence [2]. Vector control is a costly and often ineffective response to outbreaks [3]. No antivirals are currently available for any flavivirus [4], and

although promising DENV vaccine candidates have recently entered clinical trials see more [5], progress in the development of a DENV vaccine has been slow [6]. In response to this exigency, investigators have pursued novel methods to prevent and treat dengue disease. In particular, there is considerable excitement about the potential to utilize RNA interference (RNAi) (Figure 1) to treat flavivirus infection in the host and control flavivirus transmission by the vector [7]. The RNAi pathway is composed of two major branches (Figure 1). The small interfering RNA (siRNA) branch is

triggered by perfectly or nearly-perfectly base-paired exogenous dsRNA and results in RNA degradation, while the cellular microRNA branch (miRNA) is triggered by imperfectly base-paired dsRNA and results in translation repression [8–10]. Although siRNAs and miRNAs are processed PAK5 via discrete pathways, specific enzymes may participate in both pathways. For example, recent evidence from Drosophila indicates that Dicer (Dcr)-1 is critical for both RNA degradation and translation repression, while Dcr-2 is required only for RNA degradation [11, 12], and that Argonaute (Ago)-1 and Ago-2 eFT-508 molecular weight proteins overlap in their functions [13]. Figure 1 Cartoon representing the major enzymes involved in the overlapping branches of the siRNA and the miRNA pathways in Drosophila melanogaster. While this cartoon was designed to emphasize the differences between the two pathways, it is important to stress that there is also extensive interaction and overlap between the two branches (some of which are represented by dotted arrows).

This results in the formation of multiple

This results in the formation of multiple oxygen filaments (Figure  7c). Under RESET operation of the NF devices, both Joule heating and O2−migration from the W BE/high-κx interface will lead to the oxidation of the conducting filament (Figure  7d). Overshoot RESET current is also observed (Figure  8). The maximum I RESET of the devices containing AlOx, GdOx, HfOx, and TaOx switching materials were 616,

1,180, 1,628, and 2,741 μA, respectively, for NF devices, and 409, 543, 276, and 684 μA, respectively, for the PF devices (Figure  8a,b,c,d). The RESET current of NF devices is higher in all cases than the PF devices ACP-196 research buy probably because of higher current overshoot in the NF devices. Current overshoot degrades the switching material because 4SC-202 nmr uncontrolled oxygen vacancy filaments form. For the NF devices, the multifilaments can be formed due to oxygen ion migration [39]; however, the filaments are ruptured by thermal effect under RESET operation, i.e., the thermal dissolution of oxygen vacancy filaments may result the uncontrolled filaments to break as well

as the SET operation will not be controlled in consequence. The thermal dissolution of conducting filaments under RESET operation on NiOx-based resistive NVP-LDE225 cell line switching memories was also reported by Ielmini et al. [25] and Long et al. [40, 41]. In contrast, the damage is negligible in the PF devices because of the presence of an electrically formed interfacial layer at the TE/high-κ interface. The filament

diameter is readily controlled in the PF devices because of the electrically formed interface. This kind of asymmetric resistive memory stack will help to optimize resistive switching and device performance. Figure 6 Fitted I-V characteristics of PF and NF devices with IrO x /TaO x /W structure. (a) LRS of NF devices fitted ohmic behavior. (b) HRS for the NF devices were consistent with Schottky behavior. (c) Both LRS and HRS of the PF devices show a TC-SCLC transport mechanism. Figure 7 Resistive switching mechanism of the Acyl CoA dehydrogenase PF and NF devices. PF and NF devices under (a, c) SET and (b, d) RESET operations. Figure 8 RESET phenomena for the PF and NF devices. RESET currents of NF and PF devices containing (a) AlOx, (b) GdOx, (c) HfOx, and (d) TaOx switching materials with an IrOx/high-κx/W structure. High-density memory devices are required for future applications. Resistive memory devices with cross-point architecture show promise to achieve high-density memory. Therefore, we fabricated the resistive memory stacks of IrOx/high-κx/W with cross-point structure (S2). Figure  9 shows the typical I-V curves of 1,000 consecutive dc switching cycles obtained for an IrOx/AlOx/W stack. The applied voltage sweep direction is indicated by arrows marked 1 to 4.

These transmission routes are in agreement with both the incongru

These transmission routes are in agreement with both the incongruent evolutionary history of Asaia and its host species, and with the high frequency of infections with multiple Asaia strains in mosquitoes [21]. However, very little is

known about the rate and mechanisms of horizontal transfer of Asaia in hemipterans like S. titanus. Horizontal transfer in this species has been only indirectly demonstrated by the capability of Asaia to be established in leafhopper individuals fed with bacterial cells and by the ability to colonize insect salivary glands [2]. The exploitation of symbiotic microorganisms of insect vectors is recently emerging as a strategy to limit the diffusion of arthropod-borne diseases through the development of “symbiotic P5091 order control” strategies [22]. This approach could represent a promising alternative to current FD control methods, which are limited to the use of chemical insecticides and to the removal of infected plants. To set up a symbiotic control strategy, a microbial symbiont that meets the requirements needed for a control agent must be firstly identified. Such requirements include stable association with the vector,

SCH727965 dominance within its microbial community, co-localization with the pathogen, predisposition to in vitro manipulation, and, last but not least, an efficient spread system within insect populations [23]. Asaia and other acetic acid bacteria have such features in relation to dipteran mosquitoes, so they have been indicated as potential agents for natural or paratransgenic symbiotic control [4, 6, 24]. However, the capacity of Asaia to be transmitted horizontally among S. titanus has not been yet investigated. The objective of this work was to evaluate

whether Asaia is horizontally transmitted among S. titanus individuals by the oral and the venereal transmission routes. This could contribute to the evaluation of the ecology of this acetic acid bacterium in leafhopper populations. Results and discussion Donor insects Insects destined to test transmission of infection (‘donors’) were these infected with a marked strain of Asaia. To this end, donors were fed with diets added of Gfp-tagged Asaia for 48 hours and then allowed to MLN8237 price release the symbiont for 48 hours in diets supplemented with kanamycin. Afterwards the diets, in which Gfp-tagged Asaia was released, were exposed to recipient individuals for 24, 48, 72 and 96 hours, respectively. At the same time, the 98 individuals used as donor specimens were collected to be tested in q-PCR. All of them were positive for the gfp gene, with an average titre of 1.1 × 106 gfp gene copies / pg of insect 18S rRNA gene (Figure 1, Table 1). Furthermore, Gfp Asaia represented 12.

Figure 6 The 24 h no spontaneous movements (A) and heart sac edem

Figure 6 The 24 h no spontaneous movements (A) and heart sac edema (B) of the embryos. *Significant difference between the BPA alone-exposed and mixture-exposed groups at the same BPA dose (chi-square test, p < 0.05). #Significant

difference compared to the lower concentrations of mixture-exposed groups at the same time points (one-way ANOVA, p < 0.05). For the rate of abnormalities, the embryos were observed to increase abnormalities after being exposed to the mixture groups at 5, 10, and 20 mg/L of BPA, except for a small reduction at 12 hpf in the mixture-exposed groups at BPA concentrations of 10 and 20 mg/L. Compared to Captisol nmr the BPA alone-exposed groups, the durations that abnormality rate elevated significantly were 36 to 96 hpf after the mixture exposure at 5 mg/L BPA, 24 to 48 hpf after the mixture exposure at 10 mg/L of BPA, and 24 hpf after the mixture exposure at 20 mg/L of BPA, respectively (p < 0.05) (Figure 7A, B, C). Figure 7 Rates of abnormality (A-C) and hatching rate (D) of the embryos. *Significant difference between the BPA alone-exposed and mixture-exposed groups. ∆Significant difference compared to the dilution water control.

#Significant difference compared to the TiO2-NP alone control (chi-square test, p < 0.05). The combined exposure of BPA and TiO2 had an effect on the hatching rate. As shown in Figure 7D, the hatching rate of embryos exposed to the mixture groups at BPA concentrations of 5 mg/L was significantly retarded compared to that of

embryos exposed to the BPA alone-exposed groups. Discussion Regularity for combined toxic effects of TiO2-NPs and BPA on zebrafish embryos In the embryo toxicity tests, TPCA-1 mw the appearances of toxicological effects were different: Interleukin-3 receptor the embryos were mainly observed to have developmental retardation at 8 to 24 hpf, and then heart sac edema and even death were observed after 36 hpf. With the increasing concentration of BPA in the mixture-exposed groups, the embryos were significantly sensitive at the endpoints of 24 h no spontaneous movement and heart sac edema. Both the percentage of 24 h no spontaneous movement and that of heart sac edema displayed significant increases in the mixture groups at 10 and 20 mg/L of BPA compared to the single BPA groups. Moreover, it could also be found that there was a RO4929097 cell line concentration-dependent effect in the mixture-exposed groups at the endpoints of 24 h no spontaneous movement and heart sac edema. For the abnormality rate, exposure to the mixture groups almost increased the rate of abnormalities compared to the BPA alone-exposed groups and showed a concentration-dependent effect and time-dependent effect. With the increasing doses of BPA (from 5, 10, to 20 mg/L) in the mixture-exposed groups, the abnormality rates elevated at 12, 24, 36, and 48 hpf (Figure 8). All the analyses above suggest that mixture exposure increased the toxicological effects on the zebrafish embryos compared to the BPA alone-exposed groups.

Appl Phys Lett 2010, 96:122109 CrossRef

Appl Phys Lett 2010, 96:122109.CrossRef check details 4. Hill NA: Why are there so few magnetic ferroelectrics? J Phys Chem B 2000, 104:6694–6709.CrossRef 5. Ramesh R, Selleckchem LY3023414 Spaldin NA: Multiferroics

: progress and prospects in thin films. Nat Mater 2007, 6:21–29.CrossRef 6. Ma J, Hu J, Li Z, Nan C-W: Recent progress in multiferroic magnetoelectric composites: from bulk to thin films. Adv Mater (Deerfield Beach, Fla) 2011, 23:1062–1087.CrossRef 7. Eerenstein W, Mathur ND, Scott JF: Multiferroic and magnetoelectric materials. Nature 2006, 442:759–765.CrossRef 8. Vaz CAF, Hoffman J, Ahn CH, Ramesh R: Magnetoelectric coupling effects in multiferroic complex oxide composite structures. Adv Mater (Deerfield Beach, Fla) 2010, 22:2900–2918.CrossRef

BI 2536 concentration 9. Lovinger AJ: Ferroelectric polymers. Science 1983, 220:1115–1121.CrossRef 10. Zhang Q, Bharti V, Zhao X: Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Science (New York, NY) 1998, 280:2101–2104.CrossRef 11. Neese B, Wang Y, Chu B, Ren K, Liu S, Zhang QM, Huang C, West J: Piezoelectric responses in poly(vinylidene fluoride/hexafluoropropylene) copolymers. Appl Phys Lett 2007, 90:242917.CrossRef 12. Wegener M, Künstler W, Richter K, Gerhard-Multhaupt R: Ferroelectric polarization in stretched piezo- and pyroelectric poly(vinylidene fluoride-hexafluoropropylene) copolymer films. J Appl Phys 2002, 92:7442.CrossRef 13. He X, Yao K, Gan BK: Phase transition and properties of a ferroelectric poly(vinylidene fluoride-hexafluoropropylene) copolymer. J Appl Phys 2005, 97:084101.CrossRef 14. Bozorth RM, Elizabeth FT, Albert JW: Anisotropy and magnetostriction of some ferrites. Phys Rev 1955, 99:1788–1798.CrossRef 15. Zi Z, Sun Y, Zhu X, Yang MYO10 Z, Dai J, Song W: Synthesis and magnetic properties of CoFe 2 O 4 ferrite nanoparticles. J Magn Magn Mater 2009, 321:1251–1255.CrossRef 16. Andrew JS, Clarke DR: Enhanced ferroelectric phase content of polyvinylidene difluoride

fibers with the addition of magnetic nanoparticles. Langmuir: ACS J Surf Colloids 2008, 24:8435–8438.CrossRef 17. Liu B, Sun T, He J, Dravid VP: Sol–gel-derived epitaxial nanocomposite thin films with large sharp magnetoelectric effect. ACS nano 2010, 4:6836–6842.CrossRef 18. Lu SG, Jin JZ, Zhou X, Fang Z, Wang Q, Zhang QM: Large magnetoelectric coupling coefficient in poly(vinylidene fluoride-hexafluoropropylene)/Metglas laminates. J Appl Phys 2011, 110:104103.CrossRef 19. Martins P, Costa CM, Botelho G, Lanceros-Mendez S, Barandiaran JM, Gutierrez J: Dielectric and magnetic properties of ferrite/poly(vinylidene fluoride) nanocomposites. Mater Chem Phys 2012, 131:698–705.CrossRef 20. Guo Y, Liu Y, Wang J, Withers RL, Chen H, Jin L, Smith P: Giant magnetodielectric effect in 0–3 Ni0.5Zn0.5Fe2O4-Poly(vinylidene-fluoride) nanocomposite films. J Phys Chem C 2010, 114:13861–13866.