The demand curve (consumption
vs. FR value) for KO mice decreased more steeply than that of HET or WT mice, suggesting that reinforcing effectiveness is decreased with DA D2R deletion. Prefeeding decreased, whereas extinction increased overall response rates as a proportion of baseline, with no significant genotype differences. Both (+)- and (-)-eticlopride dose-dependently decreased responding in all genotypes with (-)-eticlopride more potent than (+)-eticlopride in all but KO mice. The enantiomers were equipotent in KO mice, and similar in potency to (+)-eticlopride in WT and HET mice.
That prefeeding and extinction did not vary across genotypes indicates a lack of involvement of DA D(2)Rs in these processes. Differences between (-)-eticlopride click here effects and extinction indicate that DA D2R blockade does not mimic extinction. The maintenance of responding in KO mice indicates that the DA D2R is not necessary for reinforcement. However, the economic analysis indicates that the DA D2R contributes substantially to the effectiveness of food reinforcement.”
“Sophisticated retargeting systems for lentiviral vectors have been developed in recent years. Most seek to suppress the viral envelope’s natural tropism while modifying the
receptor-binding domain such that its tropism is determined by the specificity of the engineered ligand-binding motif. Here we took advantage of the natural tropism of Nipah virus (NiV), whose attachment envelope glycoprotein has picomolar affinity for ephrinB2, a molecule proposed as a molecular 4SC-202 cell line marker of “”stemness”" (present on embryonic, hematopoietic, and neural stem cells) as well as being implicated in tumorigenesis of specific
cancers. NiV entry Selleck BAY 1895344 requires both the fusion (F) and attachment (G) glycoproteins. Truncation of the NiV-F cytoplasmic tail (T5F) alone, combined with full-length NiV-G, resulted in optimal titers of NiV-pseudotyped particles (NiVpp) (similar to 10(6) IU/ml), even without ultracentrifugation. To further enhance the infectivity of NiVpp, we engineered a hyperfusogenic NiV-F protein lacking an N-linked glycosylation site (T5F Delta N3). T5F Delta N3/wt G particles exhibited enhanced infectivity on less permissive cell lines and efficiently targeted ephrinB2(+) cells even in a 1,000-fold excess of ephrinB2-negative cells, all without any loss of specificity, as entry was abrogated by soluble ephrinB2. NiVpp also transduced human embryonic, hematopoietic, and neural stem cell populations in an ephrinB2-dependent manner. Finally, intravenous administration of the luciferase reporter NiVpp-T5F Delta N3/G to mice resulted in signals being detected in the spleen and lung but not in the liver. Bypassing the liver sink is a critical barrier for targeted gene therapy. The extraordinary specificity of NiV-G for ephrinB2 holds promise for targeting specific ephrinB2(+) populations in vivo or in vitro.