Downregulation of HSP60 was found in prostate cancer[34]and lung

Downregulation of HSP60 was found in prostate cancer[34]and lung cancer[35]. Positive HSP60 expression in esophageal squamous cell carcinoma[36], ovarian cancer [37] and bladder cancer[38] correlated with good prognosis for the patients. Mechanistic studies in different cell models indicated that association of HSP60 with procaspase-3 promotes caspase-3 maturation and activation, suggesting a pro-apoptotic role[32, PHA-848125 cost 39, 40]. In the past decades, regarding HSP60′s roles in CRC, most of the data come from expression observations. As shown

by immunohistochemistry, western blot[41–43] and by cDNA microarray analysis[44, 45], it was found that HSP60 was overexpressed in CRC tissue. The levels of HSP60 correlated with tumor grade and stage and with occurrence

of lymph node metastases[44]. While the data on the exact biological function of HSP60 in CRC cells is still lack. In this study, to clarify the biological role of the down-regulation of HSP60 induced by IGFBP7, we also explored the function of HSP60 protein in PcDNA3.1(IGFBP7)RKO cells. We found that addition of recombinant HSP60 could increase the proliferation rate and increase the colony formation ability of PcDNA3.1(IGFBP7)-RKO Bortezomib in vivo cells. The studies provide the evidence that 1. HSP60 protein may be a key molecule enrolled in CRC initiation and progression. 2. Downregulation of HSP60 may participate in, at least in part, the growth inhibiting role of IGFBP7 on colon cancer cells. However, the exact underlying molecular mechanism is still unclear. Both IGFBP7 and HSP60 could influence the extracellular signal pathways. Wajapeyee

et al. CA-4948 chemical structure reported that secretion of IGFBP7 acted through autocrine/paracrine pathways to inhibit mitogen-activated protein kinase (MAPK)- extracellular signal -regulated kinase (ERK) signaling [46]. Zhang et al. reported that HSP60 protected epithelial cells from stress-induced death through activation of ERK and inhibition of caspase 3 [47]. Whether HSP60 is complexed with pro-caspase 3 and influenced the caspase 3 and ERK signaling in colon cancer cells will remain an active subject of our ongoing research. Conclusion We have identified six candidate proteins whose expression were downregulated Carnitine palmitoyltransferase II by reintroduction of IGFBP7 in the colon cancer RKO cells using a proteomics approach. These results contributed to our better understanding of the potential underlying molecular mechanism for IGFBP7′s tumor suppressive role in CRC. Downregulation of HSP60 may be responsible for, at least in part, the proliferation inhibiting role of IGFBP7 in colorectal cancer cells. Further studies are warranted to elaborate the exact biological role and the molecular mechanism for HSP60 in colorectal carcinogenesis. Acknowledgements We thank the Research Center for Proteome Analysis, the Institute of Biochemistry and Cell Biology, the Shanghai Institute for Biological Science, and the Chinese Academy of Sciences for helping in MS analysis.

Comments are closed.