A glutamine substitution at this position stabilizes the native G

A glutamine substitution at this position stabilizes the native GPC complex and thereby prevents the induction of pH-dependent membrane fusion. In efforts to identify the intersubunit interactions of K33, we performed alanine-scanning mutagenesis at charged residues in the membrane-proximal ectodomain of G2 and determined the ability of these mutations to rescue the fusion GSK621 molecular weight deficiency in K33Q GPC. Four second-site mutations that specifically complement K33Q were identified (D400A, E410A, R414A, and K417A). Moreover, complementation was also observed at three hydrophobic positions in the membrane-spanning domain of G2 (F427, W428, and F438). Interestingly, all of the complementing mutations restored wild-type

pH sensitivity to the K33Q mutant, while none themselves affected the pH of membrane fusion. Our studies demonstrate a specific interaction between SSP and G2 that is involved in priming the native GPC complex for pH-induced membrane fusion. Importantly, this pH-dependent interaction has been shown to be vulnerable

to small-molecule compounds that stabilize the native complex and prevent the activation of membrane fusion. A detailed mechanistic understanding of the control of GPC-mediated membrane fusion will be important in guiding the development of effective therapeutics against arenaviral hemorrhagic fever.”
“The E2 protein of human papillomavirus (HPV) binds to specific sites in the viral genome to regulate its transcription, replication, and maintenance in infected cells. Like most regulatory proteins, E2 is rapidly Selleck Blasticidin S turned over. A high-throughput assay was developed

to quantify the EPZ015666 manufacturer expression and stability of E2 in vivo, based on its fusion to Renilla luciferase (RLuc). The steady-state levels of Rluc-E2 were quantified by measuring the amounts of associated luciferase activity, and its degradation was measured by monitoring the decrease in enzymatic activity occurring after a block of translation with cycloheximide. Using this assay, the E2 proteins from a low-risk (HPV11) and a high-risk (HPV31) human papillomavirus (HPV) type were found to have short half-lives of 60 min in C33A cervical carcinoma cells and to be ubiquitinated and degraded by the proteasome. Analysis of mutant proteins showed that the instability of E2 is independent of its DNA-binding and transcriptional activities but is encoded within its transactivation domain, the region that binds to the cellular chromatin factor bromodomain-containing protein 4 (Brd4) to regulate viral gene transcription. Overexpression of Brd4, or of its C-terminal E2-interaction domain, was found to increase the steady-state levels and stability of wild-type E2 but not of E2 mutants defective for binding Brd4. These results indicate that the stability of E2 is increased upon complex formation with Brd4 and highlight the value of the luciferase assay for the study of E2 degradation.

Comments are closed.