mutans UA159 microarrays provided by The Institute for Genomic Research, and previously-described methods and data click here analysis [11, 70, 78]. In brief, 2 μg total bacterial RNA was used in each reverse-transcription and https://www.selleckchem.com/products/bmn-673.html cDNA labeling reaction (performed as described in [70, 78]),
and a single preparation from each culture was hybridized per microarray slide in a Maui hybridization chamber (BioMicro Systems, Salt Lake City, UT). The resulting microarray slides were scanned, analyzed, and normalized using TIGR Spotfinder software (http://www.tigr.org/software/), and in-slide replicate analysis was performed with the TIGR microarray data analysis system (MIDAS; http://www.tigr.org/software/). Statistical analysis was carried out with BRB array tools (http://linus.nci.nih.gov/BRB-ArrayTools.html/) with a cutoff P value < 0.005 for the early exponential-phase data and P < 0.001 for the late exponential phase data. To validate the microarray results, real-time quantitative RT-PCR was performed on a subset of the differentially-expressed genes, as described previously [77, 79]. All real-time PCR primers were designed with Beacon Designer 4.0 software (Premier Biosoft International, Palo Alto, CA), and standard curves for each gene were prepared as published elsewhere
[80]. The microarray data obtained from these studies have been deposited to NCBI’s gene expression omnibus (GEO) [81] (GEO Accession #GSE39470) and comply with MIAME guidelines
[82]. Quantitative competence assays To compare the ability {Selleck Anti-infection Compound Library|Selleck Antiinfection Compound Library|Selleck Anti-infection Compound Library|Selleck Antiinfection Compound Library|Selleckchem Anti-infection Compound Library|Selleckchem Antiinfection Compound Library|Selleckchem Anti-infection Compound Library|Selleckchem Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|buy Anti-infection Compound Library|Anti-infection Compound Library ic50|Anti-infection Compound Library price|Anti-infection Compound Library cost|Anti-infection Compound Library solubility dmso|Anti-infection Compound Library purchase|Anti-infection Compound Library manufacturer|Anti-infection Compound Library research buy|Anti-infection Compound Library order|Anti-infection Compound Library mouse|Anti-infection Compound Library chemical structure|Anti-infection Compound Library mw|Anti-infection Compound Library molecular weight|Anti-infection Compound Library datasheet|Anti-infection Compound Library supplier|Anti-infection Compound Library in vitro|Anti-infection Compound Library cell line|Anti-infection Compound Library concentration|Anti-infection Compound Library nmr|Anti-infection Compound Library in vivo|Anti-infection Compound Library clinical trial|Anti-infection Compound Library cell assay|Anti-infection Compound Library screening|Anti-infection Compound Library high throughput|buy Antiinfection Compound Library|Antiinfection Compound Library ic50|Antiinfection Compound Library price|Antiinfection Compound Library cost|Antiinfection Compound Library solubility dmso|Antiinfection Compound Library purchase|Antiinfection Compound Library manufacturer|Antiinfection Compound Library research buy|Antiinfection Compound Library order|Antiinfection Compound Library chemical structure|Antiinfection Compound Library datasheet|Antiinfection Compound Library supplier|Antiinfection Compound Library in vitro|Antiinfection Compound Library cell line|Antiinfection Compound Library concentration|Antiinfection Compound Library clinical trial|Antiinfection Compound Library cell assay|Antiinfection Compound Library screening|Antiinfection Compound Library high throughput|Anti-infection Compound high throughput screening| of UA159 and its isogenic lytS, lrgA, lrgB, and lrgAB mutants to take up exogenously-added plasmid DNA, a quantitative competence assay was performed on n = 4-6 biological replicates of each strain using a previously-published protocol [83] with the following modifications: Overnight Methane monooxygenase cultures of each strain were diluted to an OD600 = 0.02 in BHI, and grown in a 96-well plate to an OD600 = 0.15 prior to addition of 500 ng plasmid DNA with and without 100 ng CSP. Plasmid pAT28 (encoding spectinomycin resistance; [84]) was used to assess transformation efficiency in UA159, lytS, lrgB, and lrgAB mutants. Because the lrgA mutant was generated with a spectinomycin-resistance cassette [37], plasmid pORi23 [encoding erythromycin resistance; [85]] was used to assess transformation efficiency in UA159 and lrgA mutant. After 2.5 h incubation in the presence of plasmid DNA +/- CSP, cultures were serially diluted and plated on BHI agar with and without selective antibiotic. CFU/ml of each culture were enumerated after 48 h growth at 37°C and 5% CO2, and transformation efficiencies were calculated as the percentage of transformants (CFU/ml on BHI + selective antibiotic) among total viable cells (CFU/ml on BHI). H2O2 assays To assess of the ability of UA159, lytS, and lrgAB mutants to grow in the presence of H2O2, overnight cultures of each strain (n = 6 biological replicates) were each diluted 40-fold into BHI.