J Bacteriol 1998, 180:5567–5573 PubMed 62 Palma M, Zurita J, Fer

J Bacteriol 1998, 180:5567–5573.PubMed 62. Palma M, Zurita J, Ferreras JA, Worgall S, Larone DH, Shi L, Campagne F, Quadri LE: Pseudomonas aeruginosa SoxR does not conform to the archetypal paradigm for SoxR-dependent regulation of the bacterial oxidative stress AP24534 ic50 adaptive response. Infect Immun 2005, CP673451 in vivo 73:2958–2966.PubMedCrossRef Competing interests The authors declare that they have no competing interests. Authors’ contributions LQ conceived the study. ET, SC, PM, UE and SA carried out the experiments. LQ, ET, SC, and DC analyzed results and drafted the manuscript. All authors read and approved the final manuscript.”
“Background

Concrete corrosion of wastewater collection systems is a significant cause of deterioration and premature failure. In the U.S., costs associated with maintaining an estimated 800,000 miles of wastewater collection infrastructure are approximately $4.5 billion per year [1]. Many systems may be beyond their design life and must be replaced because they cannot be rehabilitated [2]. Failure to adequately address the deteriorating infrastructure networks threatens our environment, public health, and safety. In wastewater collection systems microbial-induced concrete corrosion (MICC) may occur in areas under higher concentrations of hydrogen sulfide (H2S) [3–5]. The primary source of sulfur is sulfate (SO4 2-) which can

be reduced by sulfate-reducing bacteria (SRB) to hydrogen sulfide (H2S) under anaerobic conditions. H2S is transferred across the air-water interface to the sewer atmosphere where chemoautotrophic see more bacteria on the pipe surface, including sulfide-oxidizing bacteria (SOB), convert the H2S to biogenic sulfuric acid (H2SO4). Biogenic sulfuric acid (H2SO4) can be generated by various microbial LY294002 species [6–9]. While many of the microorganisms and general mechanism involved in MICC has been known for decades, and recent studies using molecular-based approaches have more accurately described the microbial ecology of these engineered systems [6, 8, 9], a better understanding

of the metabolic processes and functional capabilities is needed to develop new approaches to mitigate MICC and its associated effects. The objective of this study was to characterize the microbial community of concrete wastewater biofilms and their functional capability based on molecular analyses of metagenome libraries and to compare it with 16S rRNA gene sequences from previously generated clone libraries [7–11]. Specifically, we sampled biofilms from two sections of a severely corroded concrete wastewater pipe to obtain a better understanding of microbial community colonization processes and mechanisms of concrete deterioration. To our knowledge this is the first published report utilizing metagenomics to elucidate microbial community functional capabilities involved in MICC in wastewater collection systems.

Comments are closed.