After centrifugation for 10 minutes at 18500 g, the supernatant was discarded and the pellet was resuspended in a small volume of distilled water. The phage preparation was then layered on top of a preformed five-step cesium chloride gradient (equal volumes of CsCl solutions in 20 mM Tris-HCl pH 7.5 with densities of 1.7, 1.6, 1.5, 1.4 and 1.3 g/ml) and centrifuged
for 17 hours in a SW 40Ti rotor at 24000 rpm. 0.5 ml fractions were collected from the top of the gradient and the peak fractions containing phage were pooled and dialyzed against one liter of 20 mM Tris-HCl pH 7.5 overnight at 4 °C. The preparation was concentrated to 500 μl using Selleck Doramapimod Amicon Ultra 10K MW cutoff spin unit (Millipore) and used for RNA extraction. Isolation of genomic RNA and sequencing 500 μl of purified phage preparation was mixed with 500 μl of phenol and SDS was added to a final concentration of 0.5%. The mixture was vigorously vortexed https://www.selleckchem.com/products/kpt-330.html for 60 s
and centrifuged at 12000 g for 3 minutes. The aqueous phase was extracted two more times with a 1:1 phenol/chloroform mixture and once with chloroform. The RNA in the final aqueous phase was precipitated with ethanol, centrifuged and the pellet redissolved in a small volume of DEPC-treated water. 4 μg of the purified RNA was reverse-transcribed with RevertAid Premium reverse transcriptase (Fermentas) using primer 5′-GCAAATTCTGTTTTATCAGACNNNNNN-3′. Reaction products were purified using GeneJet PCR purification kit (Fermentas) and eluted in 20 μl of water. The 3′ termini of the purified first strand cDNAs were dATP-tailed using terminal deoxynucleotidyl transferase (Fermentas). The reaction products were again purified using the PCR purification kit and used as a template for second-strand PCR with primers 5′-GCAAATTCTGTTTTATCAGAC-3′ and 5′-GCGCG(T)18-3′ and Pfu DNA polymerase (Fermentas). Reaction products
were separated in a 1% agarose gel and a slice corresponding to 1000 – 3000 base pair DNA fragments was cut out. The fragments were extracted using GeneJet Phospholipase D1 gel extraction kit (Fermentas) and ligated in pJET1.2/blunt vector (Fermentas). Insert-containing clones were sequenced on an ABI Prism 3100 Genetic Analyzer using BigDye Terminator v3.1 kit (Applied Biosystems). Based on the obtained sequence data, additional reverse transcription-PCRs were performed using specific primers to fill gaps and increase coverage. Since the initial cloning AZD8186 order procedure already involved 3′-tailing of cDNAs, it was possible to determine the 5′ end of the genome from these clones. To determine the sequence of the 3′ end, phage RNA was tailed with E.coli Poly(A) polymerase (Ambion), followed by reverse transcription with primer 5′-GCGCG(T)18-3′ and PCR using primers 5′-GCGCG(T)18-3′ and 5′-CTGGCGCCTTTGGTGGATAC-3′ corresponding to nucleotides 3072-3091 of the phage genome. Genome assembly and ORF prediction was done with the program ContigExpress from the VectorNTI Suite (Invitrogen).