(4-Hydroxy-3-nitrophenyl) acetyl (NP)-specific sIgM bound to Ag N

(4-Hydroxy-3-nitrophenyl) acetyl (NP)-specific sIgM bound to Ag NP-PE (Ag/sIgM) was able to bind to CD22-expresssing (J558L/CD22) cells but not to CD22-deficient (J558L) cells (Fig. 1A). Double staining with anti-CD22 mAb is shown in Supporting Information Fig. 1. This binding was not prevented by the presence of FCS containing α2,6Sia, suggesting that CD22 selectively binds to sIgM. CD22 lectin activity is masked on the cells harboring α2,6Sia-containing

glycan on the cell surface, since CD22 is heavily glycosylated and interacts with neighboring CD22 via glycan ligands PF-02341066 chemical structure 13. Therefore, we tested whether Ag/sIgM binds to CD22 on J558L/CD22/ST6 cells that express the CD22 glycan ligands. As shown in Fig. 1A, sIgM did not bind to CD22 on J558L/CD22/ST6 cells. Furthermore, we examined their interaction by using spleen B cells treated with or without sialidase (Fig. 1B). sIgM did not interact with spleen B cells from wild-type C57BL/6 mice (Fig. 1A). However, Ag/sIgM bound to sialidase-treated cells, suggesting that sIgM can potentially interact with CD22 on B cells, but endogenous α2,6Sia prevents this interaction. The formation of multimeric CD22 complexes via in cis glycan ligands, probably on CD22 13, may prevent inappropriate interactions between

CD22 and molecules harboring α2,6Sia, such as sIgM, in the serum. While sIgM seems Dabrafenib order to bind to CD22 on B cells, it cannot bind to CD22 on α2,6Sia-harboring cells. We asked whether the complex of Ag and Ag-specific sIgM (Ag/sIgM) can induce CD22 activation as is the case for synthetic α2,6sialylated Ag 15. Since most B cells from QM mice are NP specific 17, we conjugated NP to non-NP-specific sIgM (NP-sIgM) as an Ag/sIgM and treated with or without sialidase (Supporting Information Fig. 2). We stimulated

spleen follicular B cells from QM mice with sialidase-treated Ag/sIgM (α2,6Sia-deficient Ag/sIgM) or untreated Ag/sIgM. Sialidase-treated Ag/sIgM induced augmented BCR signaling, including ERK activation and Ca2+ mobilization, compared with that induced by untreated Ag/sIgM (Fig. 2A and B). In contrast, in B cells from CD22−/− QM mice, Ag/sIgM induced a similar level of BCR signaling to that induced by sialidase-treated Ag/sIgM. In particular, Ag/sIgM induced less Ca2+ mobilization why in B cells from WT QM mice than NP-BSA did, whereas Ag/sIgM induced stronger Ca2+ mobilization in CD22−/− QM mouse B cells than NP-BSA did. Furthermore, we stimulated a mouse B lymphoma line, K46μvCD22, which harbored NP-specific BCR with sialidase-treated or untreated Ag/sIgM. As a control, K46μvCD72 which expresses another inhibitory coreceptor, CD72 18, instead of CD22, was used. CD22-expressing cells (K46μvCD22) yielded the results similar to those obtained in QM B cells, whereas the non-CD22-expressing cells (K46μvCD72) exhibited similar results to CD22−/− QM B cells (Fig. 2C and D).

Comments are closed.