The prime habitats for E. helvum are the tropical forest and typically Cytoskeletal Signaling roost in colonies on tall trees like Eucalyptus saligna and Cocos nucifera[8]. Staphylococcus aureus is part of the normal flora of the skin and mucous membrane of a wide variety of mammals and birds, and recent studies have indicated that animals could be a source of S. aureus infections in humans [9–11]. The main campus of the Obafemi Awolowo University, Ile-Ife (OAU) Nigeria, is colonized by a large population of E. helvum[12, 13], but faecal contamination and pollution of the environment by these
migratory mammals is a problem, moreover, the public health implications of their activities are not known. This study characterized S. aureus obtained from faecal samples of bats that colonize the main campus of the institution, with a view to understanding the clonal nature and diversity of the isolates, and to determine the possible risk of dissemination of S. MDV3100 in vitro aureus from bats to humans in the community through
faecal shedding. Results and Discussion A total of 107 S. aureus isolates were obtained from 560 faecal samples of E. helvum based on phenotypic identification. Moreover, they were all genotypically confirmed by hsp60 partial sequencing, and there was excellent agreement between the phenotypic and molecular methods in the identification of the isolates. The number of samples and S. aureus isolates in each sampling site are indicated in Figure 1. Antibiotic susceptibility testing is paramount for monitoring resistance in commensal bacteria and various pathogens of clinical importance. In this study, Dolutegravir all the isolates were susceptible to oxacillin, cefoxitin, tetracycline, chloramphenicol, gentamicin and mupirocin. However, four (3.7%) isolates were resistant to penicillin, while six (5.6%) and eight (7.4%) isolates were resistant to ciprofloxacin and erythromycin, respectively. None of the isolates exhibited inducible resistance however, 3.7% were constitutively resistant to clindamycin (Table 1). Studies have reported faecal carriage of methicillin-resistant S.
aureus (MRSA) in animals [14, 15]. However, MRSA was not detected in this study which is similar to recent reports on analysis of faecal samples from swine and feedlot cattle [16, 17]. The low rate of resistance to different classes of antibiotics observed among the isolates in this study suggests that these migratory mammals may not have been exposed to the selective pressure of antimicrobial agents. Figure 1 Map of Obafemi Awolowo University (OAU) campus showing the sampling site/roosting habitat of the Straw-Coloured Fruit Bat ( E. helvum ). The number of samples (in each site) and S. aureus isolates (in parenthesis) are indicated. Table 1 Antibiotic susceptibility of 107 S. aureus isolates from faecal samples of E.